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Abstract

The e}ective elastic behavior of some models for low density cellular solids\ or solid foams\ are calculated
using analytical and numerical techniques[ The models are {perfect| in the sense that imperfections or
irregularities as often encountered in real foams have been removed[ We believe that the present models can
serve as references to which more advanced models which include imperfections and irregularities can be
compared[ The work in this paper does not address buckling or yielding in cell walls\ which play an
increasingly important role as foam stresses increase[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The aim of this paper is to present some presumably new models for low density cellular solids\
or solid foams[ A number of older models will be revisited for comparative reasons[ Cellular solids
have a number of applications including core material for sandwich structures\ sound insulation\
shock absorption\ etc[ Various grades of expanded PVC based foams are widely used a sandwich
core materials\ for example for naval composite material vessels\ and PMI foams and aluminum
or Nomex honeycombs for aircraft parts[ Metal foams made of for example aluminum seem to
have a potential to greatly outperform the polymer foams and\ in some applications\ also the
honeycombs[ The reasons include good mechanical properties when compared with the polymer
foams\ and good environmental properties when compared with honeycombs[ Honeycombs may
trap quite signi_cant amounts of water which tend to di}use through composite material skins\
particularly in naval applications[ However\ at the present time\ the mechanical properties of metal
foams are considerably lower than what would be expected by comparing with for example PVC
based foams[ The di}erence in mechanical behavior between the metal and polymer foams can
hopefully be understood by analyzing di}erent models for cellular solids[ This is done in the
present paper[
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Cellular solids can roughly be divided into two groups\ open and closed cell materials[ The open
cell materials generally consist of a network of interconnected rod or beam!like members "struts#\
whereas closed cell materials consist of a network of interconnected plate of shell like members
"walls#[ Occasionally\ both cell struts and walls will be collectively referred to as {cell walls| in the
paper[ The emphasis of the present paper is on 2!D modeling of closed cell materials[ Some simple
models for open cell materials are included\ but these should rather be regarded as an introduction
to the closed cell materials[ We will presently not consider models which consist of both beam and
plate or membrane elements\ which\ however\ may be appropriate for some closed cell materials
which have rather thick edges "where cell walls meet# and thin cell walls[

The paper is organized as follows ] in Section 1 the concept of e}ective properties of cellular
solids are reviewed[ In Section 2\ some scaling laws for cellular solids are derived by simple means[
Section 3 is devoted to open cell models[ Two simple models for open cell materials are presented\
one consisting of a cubically symmetric periodic arrangement of struts\ and the other of randomly
arranged struts[ These are not realistic models for open cell materials\ but they provide some
qualitative insight[ A more realistic model\ due to Warren and Kraynik "0886# is brie~y discussed[
In Section 4\ eight closed cell models are presented[ These include _ve analytical models ] Hashin|s
"0851# composite spheres model\ a box!like model\ two models which are built of hollow spheres\
and a model consisting of randomly arranged plates[ Sti}nesses are presented along with these
models[ Three _nite element "FE# models are also analyzed\ one consisting of {truncated| hollow
spheres\ and two consisting of ~at faced polyhedra ] the Kelvin foam\ and an FCC arrangement
with two di}erent polyhedra[ The results from the FE analyses are presented in Section 5[ Section
6 summarizes some experimentally measured sti}nesses of polymer and metal foams[ A note on
scaling of sti}ness with density is made in Section 7\ and a discussion on reasons for deviations
between theory and experiments in Section 8[ The paper is summarized and concluded in Section
09[

1[ Cellular solids ] effective elastic properties\ anisotropy and isotropy

This study is primarily concerned with global\ or macroscopic\ elastic behavior of cellular solids[
If a block "or representative volume element\ RVE# of cellular solid\ which is large when compared
to the size of single cells and cell walls\ is subjected to uniform displacements on its boundaries\
then the tractions on the boundaries will vary enormously on the micro level[ The tractions will be
zero where there is no material "where the sides of the RVE intersect the interior of a cell#\ and
non!zero where there is material[ However\ on the macro level the tractions may be considered
uniform save for a short wave length ~uctuation about the mean traction[ Macroscopic stress s¹ ij

and strain o¹kl are introduced as volume averages over an RVE[ Overhead bars are used for
macroscopic foam quantities\ while the absence of a bar is used for a cell wall quantity " fully dense
material#[ Macroscopic elastic sti}nesses are introduced as the quantities relating macroscopic
stress s¹ ij to macroscopic strain o¹kl\

s¹ ij � CÞijklo¹kl\ o¹ij � SÞijkls¹ kl "0#
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The strain energy density and the complementary strain energy density in the foam are\ respectively\

WÞ � 0
1
CÞijklo¹ijo¹kl

WÞ� � 0
1
SÞijkls¹ ijs¹ kl "1#

Here and in the remainder of the paper\ the summation convection is used\ with Latin indices
ranging from 0Ð2\ and Greek indices from 0Ð1[

Some of the foam models are isotropic whereas others have cubic symmetry[ For a cubic
medium\ there are three independent sti}nesses\ CÞ0000\ CÞ0011\ and CÞ0101 with the coordinate axes
aligned with the cubic axes[ A measure for the anisotropy0 is

a �
CÞ0000−CÞ0011

1CÞ0101

\ a � 0 for isotropy "2#

This quantity will be recorded for most of the models analyzed[
Many of the real foams which we wish to model are more or less isotropic\ whereas some of the

models are not isotropic\ but have cubic symmetry[ From the results from the calculations on the
cubic cells models\ we may create {equivalent| isotropic media\ whose sti}nesses are given by shear
moduli GÞ and bulk moduli KÞ[ Upper "Voigt# bounds on these moduli can be derived\ as well as
other non!bounding estimates based on for example self consistent models[ Lower "Reuss# bounds
can be derived for a very special model\ but this lower bound has little or no practical use[ The
lower bound sti}nesses of a cellular solid are zero "obtained with the material clustered in non!
contacting regions#[ The procedure to obtain isotropic sti}nesses\ which will be presented for some
of the models\ are discussed in Appendix A[

2[ Scaling laws assuming simple deformations on the micro level

First in this Section\ some simple scaling laws will be derived by using mainly dimensional
consideration and linearity[ Later in the Section\ some assumptions about the deformation mech!
anism on the micro level will also be used[

We are here concerned with the linear elastic sti}ness of the cellular solid[ The sti}ness of the
cellular solid\ such as Young|s modulus EÞ\ may depend on the shape of the micro structure\ the
size L of the micro structure "L is here an arbitrary length which scales the whole micro structure#\
and the elastic properties "Young|s modulus E\ and Poisson||s ratio n# of the cell wall material[

0 This measure of anisotropy is constructed by comparing the stresses in the material\ resulting from two di}erent
strain states[ The two strain states are identical\ but applied in di}erent directions relative to the material[ The strain
state o¹00 � o�\ o¹11 � −o�\ other o¹ij � 9 gives rise to the stresses s¹ 00 �"CÞ0000−CÞ0011#o�\ s¹ 11 � −s¹ 00\ other s¹ ij � 9 "when the
material has cubic symmetry#[ The same strain state but applied in a coordinate system rotated 34> around the x2 axis
is o¹01 � o�\ other o¹ij � 9\ and the stresses are s¹ 01 � 1CÞ0101o�\ other s¹ ij � 9\ or equivalently s¹ ?00 � 1CÞ0101o�\ s¹ ?11 � −s¹ ?00\
other s¹ ?ij � 9 measured in the 34> rotated coordinate system[ The measure of anisotropy is
a � s¹00:s¹ ?00 �"CÞ0000−CÞ0011#:"1CÞ0101# where s¹ 00 is the stress measured in the original coordinate system under the _rst
strain state\ and s¹ ?00 is the stress measured in the rotated coordinate system under the second strain state ^ the prime
denotes quantities measured in the rotated coordinate system[
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From dimensional considerations it is clear that macroscopic sti}nesses of two cellular solids which
are made of the same material\ and whose micro structures are identical except that the size L
di}ers\ are the same[

We will now compare cellular solids which have identical micro structures\ but are made of
di}erent materials[ Assume that the solid materials have the same Poisson|s ratios n\ but di}erent
Young|s moduli E and densities r[ Dimensional considerations give that the two quotients EÞ:E
and r¹ :r are the same for cellular solids with identical micro structures[

The general dependence of sti}nesses such as relative Young|s modulus EÞ:E on relative density
r¹ :r in cellular materials can be estimated by assuming a deformation mechanism on the micro
level\ i[e[ in the cell walls\ and using linearity and dimensional considerations[ The resulting
relations agree with formulas derived by for example Gibson and Ashby "0877#\ who used some
di}erent foam models[

Now\ assume for example that the deformation mechanism in a certain open cell 2!D material
is mainly bending in the cell struts "which is appropriate for example for a 1!D honeycomb micro
structure as depicted in Fig[ 0 when subjected to uniaxial load in the plane#[ The cell struts may
with su.cient accuracy be modeled by beam theory\ and the problem then contains the parameters
force on a cell "or on a cell strut# P ðML:T1Ł\ cell size L ðLŁ\ and cell strut "beam# bending sti}ness
D � EI ðML2:T1Ł[ Dimensions of the quantities are given within brackets ^ M is mass\ L is length\
and T is time[ Due to linearity "deformations are linear in load# and dimensional considerations\
local deformation d ðLŁ will have the form

d �
PL2

D
"3#

and the Young|s modulus of the cellular solid will have the form

EÞ�
s¹
o¹
�

P:L1

d:L
�

D

L3
"4#

Now assume that the cell struts consist of beam!like members with characteristic cross sectional
dimension h ðLŁ[ The cell strut bending sti}ness will then have the form

Fig[ 0[ Cross section of two 1!D cellular materials\ honeycomb and iso!grid[ The local deformation in the honeycomb
"left# is bending when the in!plane e}ective strain is purely deviatoric[ The local deformation in the iso!grid "right# is
stretching[ The 1!D Young|s modulus EÞ scales cubically with relative density for the honeycomb and linearly for the
iso!grid\ whereas bulk moduli KÞ scale linearly for both materials[
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D � Eh3 "5#

where E is Young|s modulus of the solid material of the cells struts[ The e}ective density is

r¹
r

� 0
h
L1

1

"6#

assuming that the number of cell struts per unit volume foam does not change with density[ In
conclusion\ the scaling of Young|s modulus with density is

EÞ� E 0
h
L1

3

� E 0
r¹
r1

1

"7#

for an open cell bending controlled 2!D micro structure[
Similar analyses are easily performed for stretching controlled open cell materials\ twisting

controlled open cell 2!D materials\ and bending and stretching controlled closed cell materials[
The results are summarized as ]

EÞ� E 0
r¹
r1

m

"8#

where

1!D ] m � 0 for stretching controlled micro structures
m � 2 for bending controlled micro structures

2!D ] m � 0 for stretching controlled rod and plate like micro structures
m � 1 for bending or twisting controlled rod like micro structures
m � 2 for bending controlled plate like micro structures

In particular\ we observe that sti}nesses scale cubically "m � 2# with density for closed cell bending
controlled micro structures[

The procedure outlined here can be used for any sti}ness[ Note that di}erent sti}nesses may
scale di}erently with density for a given cellular solid[ For example\ the local deformation in a 1!
D honeycomb as depicted in Fig[ 0 is mainly bending when the in!plane e}ective strain is purely
deviatoric\ whereas the local deformation is stretching when the e}ective strain is purely dila!
tational[ The in!plane Young|s modulus and shear modulus thus scale cubically with relative
density\ whereas "in!plane# bulk modulus scales linearly[

3[ Models for open cell foams

In this Section\ three di}erent models for open cell foams are discussed[ The _rst model is far
from physically realistic\ but it does provide some results which coincide with those of other more
sophisticated models[
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3[0[ Stretchin` controlled open cell cube

A very simple and rather non!realistic model for an open cell foam is here analyzed[ Its only
justi_cation here is that it has some properties which coincide with those of some more physically
realistic models[ The model consists of 25 struts and 03 nodes*one node in each of the eight
corners of a cube\ and one node in the center of each of the six faces of the cube[ Twelve of the
struts are placed along the edges of the cube[ Four struts are placed on each face of the cube\
attached to one corner node each and all four attached to the node in the center of the face[ In
this model\ the struts are assumed to be pin joined at the nodes\ i[e[ no moment is transferred
between the struts[ This assumption is of course not realistic for a cellular solid\ but as stated some
results of interest can still be obtained[ The nodes are assumed to have no volume[

The structure has cubic symmetry and thus three independent sti}nesses[ All struts have the
same area A and Young|s modulus E[ The sti}nesses are

CÞ0000 �
"0¦z1#EA

L1

CÞ0011 � CÞ0101 �
EA

z1L1
"09#

with the coordinate axes aligned with the cubic axes of the material[1 The density is

r¹
r

�
2"0¦1z1#A

L1
"00#

This foam model is not isotropic\ but the anisotropy according to eqn "2# is a ¼ 0[10[ The bulk
modulus of the foam is

KÞ �
E
8

r¹
r

"01#

An upper "Voigt# bound isotropic medium can be constructed for this foam by equating the
sti}ness invariants of the isotropic medium with the sti}ness invariants of the anisotropic medium\
see Appendix A[ This gives the shear modulus

GÞ �
E
04

r¹
r

"02#

for the isotropic foam[

1 Let us\ without a deeper discussion\ point out that CÞ0011 � CÞ0101 is not a coincidence[ The Cauchy result ðsee for
example Born and Huang "0843# for a thorough discussion*the Cauchy result will not be re!derived hereŁ states that
the sti}ness CÞijkl is symmetric in all indices "CÞijkl � CÞikjl apart from the usual CÞijkl � CÞjikl � CÞklij# for a crystal lattice with
central forces only between the atoms\ and the atoms moving as in a homogeneous medium[ In the present model\ the
forces between nodes are central and the nodes move as in a homogeneous medium[ The foam sti}ness must thus be
symmetric in all indices[ For an isotropic medium\ this leads to the Poisson ratio n¹ � 0:3[
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3[1[ Isotropic stretchin` controlled open cell micro structure

Upper bound sti}nesses of an isotropic open cell foam consisting of straight or curved struts of
uniform or non!uniform cross section can be constructed[ These cell struts are assumed to have
the same shape\ but may be of di}erent sizes[ In a real foam\ all cell struts naturally do not have
the same shape[ However\ for this model we select a single cell strut shape which in some sense
should be representative for all cell struts in the foam[

These bounds were derived by Grenestedt "0887#\ and we refer to that paper for a complete
analysis[ Presently\ the upper bound is re!derived for the case the struts are straight\ have uniform
cross section\ and are pinned at the ends[

The present upper bound sti}nesses are constructed in a similar way as the Voigt bound "see
e[g[ Appendix A#[ The only geometric assumption is that the cell struts are rod!like and thin
compared to their lengths[ No assumption about the connectivity of the struts is made[ The bounds
are thus applicable for example for both foams schematically depicted in Fig[ 0 "save for the fact
that the bounds are for 2!D materials#\ even though these two models are known to have very
di}erent sti}nesses[ Presently\ we subject the boundaries of a piece of foam to the displacements
ui � o¹ijxj\ where o¹ij are given numbers[ The volume averaged strains in the foam are o¹ij[ An assumed
kinematic _eld is needed to construct the upper bound[ The kinematic _eld which will be used is
that each strut end\ or node\ translates as in a homogeneous medium\ unode

i � o¹ijx
node
j where xnode

j

denotes the coordinates of the node[ Within each strut\ the kinematic _elds are assumed to be that
the axial strain is constant along the strut\ and that the transverse strains equal Poisson|s ratio
times axial strain[

We will now study an arbitrary strut within the foam[ The strut end displacements are
unode

i � o¹ijx
node
j in the global coordinate system[ The relative strut end displacements are easy to

express in displacements parallel and transverse to the strut\ but it here su.ces to note that these
are linear in the foam strains o¹ij[ The strain energy Wr in an arbitrary strut "here indexed r# in the
foam can then be written

Wr �
Vr

1
Cr

ijklo¹ijo¹kl "03#

where Vr is the volume of strut r\ and Cr
ijkl are the components in the global coordinates of a

sti}ness tensor for strut r and de_ned by this relation[ This sti}ness tensor depends on the
orientation of the strut\ but not on the size of the strut[ In strut _xed coordinates\ these strut
sti}ness tensors are the same for all struts[ The components of the tensor will be derived shortly[

The strain energy within an RVE with volume VF of the foam will be the sum of the strain
energy in all struts\

WÞ � s
N

r�0

Wr �
0
1 0 s

N

r�0

VrCr
ijkl1 o¹ijo¹kl 0

VF

1
CÞijklo¹ijo¹kl "04#

where CÞijkl is the sti}ness of the foam\ which is the quantity we are trying to calculate[ This strain
energy was obtained by an assumed kinematic _eld of all cell struts\ and this strain energy is thus\
an upper bound on the strain energy of the foam "due to the minimum of the potential energy\
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which equals the strain energy when the only loading is boundary displacements#[ The foam
sti}nesses are most easily obtained by constructing the sti}ness invariants\

CÞiijj �
0

VF 0 s
N

r�0

VrCr
iijj1� 0

0

VF
s
N

r�0

Vr1Cr
iijj �

r¹
r

Ciijj

CÞijij �
r¹
r

Cijij "05#

where the index {r| was dropped since the sti}ness invariants are the same for all self similar struts
"and since they are invariants they are the same in all coordinate systems#[ It now remains to
obtain the sti}ness invariants Ciijj and Cijij for a strut[

The strut sti}ness tensor will be derived by aligning a strut with the global coordinates xi\ with
one strut end in the center of the coordinate system and the other on the x0 axis[ The strut ends
are given the displacements unode

i � o¹ijx
node
j \ i[e[ the axial strain in the strut is simply o¹00[ The strain

energy in the strut is

Wr �
Vr

1
Eo¹1

00 "06#

so an identi_cation with eqn "03# gives the strut sti}nesses

Cr
0000 � E\ other Cr

ijkl � 9 "07#

and thus\ the sti}ness invariants are Ciijj � Cijij � E[ For an isotropic medium\ the bulk modulus
is KÞ � CÞiijj:8 and the shear modulus is GÞ �"2CÞijij−CÞiijj#:29[ Thus\ for the present foam\

KÞ �
r¹
r

E
8

GÞ �
r¹
r

E
04

"08#

These are both upper bound moduli of an open foam consisting of straight pinned struts[ Grenestedt
"0887# derived the upper bounds for an open cell foam consisting of straight beams with clamped
ends\ and the di}erence to the present bounds is negligible for low density cellular solids[

The points of interest from this model is that upper bound moduli are obtained\ and that the
bulk modulus is the same as for the former open cell model[ Another point is that the sti}ness
invariants of the foam are the same as the sti}ness invariants of the member from which the foam
is made up\ multiplied with relative density[ Here\ the sti}ness of the member is de_ned through
the relation

Wr � 0
1
Cr

ijklo¹ijo¹kl "19#

where Wr is the strain energy density in member r\ whose boundaries are displaced as ui � o¹ijxj[
This result is quite general\ and it will be used for a closed cell model later in this paper[
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The results of this Section have earlier been derived by Christensen and Waals "0861# and
Christensen "0875# by a di}erent approach[

3[2[ Stiffnesses of other open cell structures

Warren and Kraynik "0886# analyzed a 2!D open cell structure which has some similarities with
the honeycomb in 1!D[ Beams were placed along the edges of the Kelvin foam structure "which
will be further analysed in Section 4[6#[ The model has cubic symmetry[ The bulk modulus is the
same as given in eqns "01# and "08#\ KÞ � E"r¹ :r#:8\ which scales linearly with density ðm � 0 in
eqn "8#Ł[ When subjected to dilatational deformations\ the deformation mechanism in the cell
struts is only stretching[

The shear sti}nesses\ on the other hand\ scale quadratically with density\ since the cell struts
deform by bending and twisting under deviatoric deformations ðm � 1 in eqn "8#Ł[ A number of
other open cell models are discussed in the paper by Warren and Kraynik "0886#\ which is
recommended for further details[

4[ Models for closed cell foams

In the following eight Sub!Sections\ eight di}erent models for closed cell foams are discussed[
The _rst two models are old\ but the others are believed to contain some new aspects[

Gas compressibility may a}ect the macroscopic sti}nesses of\ in particular\ closed cell cellular
solids[ Under quasi static\ hydrostatic macroscopic loads and small strains\ gas compressibility
increases the bulk modulus by an amount approximately equal to the gas pressure in the cells in
the undeformed cellular solid[ The gas pressure in the cells of most cellular solids are near
atmospheric pressure\ so gas compressibility may increase the bulk modulus by approximately 9[0
MPa[ In the remainder of the paper\ this e}ect is ignored[

4[0[ Multi!disperse hollow spheres model\ and HashinÐShtrikman upper bounds

Hashin "0851# introduced a composite spheres model which has been used for obtaining proper!
ties of closed cell cellular solids[ This model consists of hollow spherical shells which all have the
same ratio of wall thickness to diameter\ but di}erent sizes[ The spheres are arranged such that
they _ll space*every {hole| between spheres is _lled with smaller spheres\ and so on\ until space
eventually is _lled[ Figure 1 depicts the foam\ but without many of the smaller spheres[

The bulk modulus is easily calculated for this model\ and it equals the HashinÐShtrikman "0852#
upper bound for a solid consisting of dense isotropic material "the material in the cell walls# and
voids\ where the void shape and the distribution is such that the resulting cellular solid is isotropic[
The HashinÐShtrikman bound for the bulk modulus is

KÞ �
3GK"r¹ :r#

3G¦2K"0−r¹ :r#
:

r¹ :r:9

r¹
r

3GK
3G¦2K

�
r¹
r

1E
8"0−n#

"10#
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Fig[ 1[ Schematic of multi!disperse hollow spheres model[ All space between spheres should be _lled with smaller spheres\
not depicted in the _gure[

The low density asymptote is of particular interest for the low density foams\ and it will be used
to normalize results from other models below[ The HashinÐShtrikman "0852# upper bound for the
shear modulus is

GÞ �
G"8K¦7G#"r¹ :r#

04K¦19G−5"K¦1G#"r¹ :r#
:

r¹ :r:9

r¹
r

G"8K¦7G#
4"3G¦2K#

�
r¹
r

E"6−4n#

29"0−n1#
"11#

The lower bounds for both KÞ and GÞ naturally vanish "obtained with all material clustered in non!
contacting regions#[

For _xed Young|s modulus E of the cell wall material\ KÞ is according to eqn "10# increasing for
increasing Poisson ratio n\ whereas GÞ has a minimum for n �"6−z13#:4 ¼ 9[31 and increases for
n away from this value[

4[1[ Stretchin` controlled closed cell box model

Another even simpler model of a cellular solid consists of cubic boxes arranged in a cubic lattice\
or three sets of parallel planes where each set is normal to one of the three Cartesian coordinate
axes[ The model is depicted in Fig[ 2[ This model has been employed for example by Matonis
"0853# to calculate critical compressive stresses of foams[ The sti}nesses for a low density cellular
material with this structure are

CÞ0000 �
1E

2"0−n1# 0
r¹
r1

CÞ0011 �
En

2"0−n1# 0
r¹
r1

CÞ0101 �
G
2 0

r¹
r1 "12#
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Fig[ 2[ Box model consisting of ~at plates[

with the coordinate axes aligned with the cubic axes of the material[ The bulk modulus is

KÞ � CÞiijj:8 �"CÞ0000¦1CÞ0011#:2 �
1E

8"0−n# 0
r¹
r1 "13#

which equals the low density asymptote of the HashinÐShtrikman upper bound\ eqn "10#[
This cell model has cubic symmetry but is not isotropic[ The anisotropy is

a �
1−n

0−n
"14#

and n � 9[2 makes a ¼ 1[3[ Because of the geometric simplicity of this model\ it may be suited for
studying for example the e}ect of {imperfections|\ such as curvature of the cell walls\ on e}ective
properties[

4[2[ Analytic mono!disperse closed cell simple cubic hollow spheres model

This model consists of hollow connected spheres in a simple cubically periodic arrangement\
Fig[ 3[ The spheres are placed in rows parallel to the three Cartesian coordinate axes\ and contacting
each other along these rows[ This arrangement is not isotropic[ The following analysis was taken
from Budiansky "0885#[

The deformation of the spheres is quite local in nature when the spheres are thin walled\ the
contact region between the spheres is small\ and the foam is subjected to any combination of
stretchings parallel to the coordinate axes[ The deformation can therefore with satisfactory accu!
racy be obtained from a spherical cap and shallow shell theory[ In case the medium is subjected to
shear deformation in the present coordinate axes\ analysis of only a cap is in general not su.cient[
Only analysis of a spherical cap is presently performed\ and the sti}nesses CÞ0000 and CÞ0011 but not
CÞ0101 can then be determined[ The methods to construct an isotropic medium cannot be used since
all sti}nesses are not known\ but the {stretching| modulus EÞS "Young|s modulus in the direction
of a lattice vector# and the bulk modulus can be calculated[ These are closely related "EÞS � 2KÞ# ^
only KÞ will be given below[
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Fig[ 3[ Schematic of simple cubic arrangement of identical spherical shells[

The spheres will have a _nite contact area which presently for simplicity is modeled as a constant
pressure within a circular region "with radius rp# corresponding to the contact regions between the
spheres[ The deformation state of the cap is given in Appendix B[

The bulk modulus is plotted vs relative density in Fig[ 4 for di}erent contact sizes between the
spheres[ Two extreme cases of the model are the case of point contact between the spheres "m � 9
in Appendix B#\ for which the bulk modulus is

KÞ �
3E

2p1z2"0−n1# 0
r¹
r1

1

"15#

and KÞ ¼ 9[97E"r¹ :r#1 for n � 9[2[ The case of vanishing relative density and _nite area contact
"m � � in Appendix B#\ gives

KÞ �
E
5 0

r¹
r1 0

rp

R1
1

"16#

For contact regions between these two extremes\ intermediate sti}nesses are obtained[
Observe that KÞ in eqn "16# scales linearly with density when rp:R is independent of density[ KÞ

for the multi!disperse hollow spheres model\ eqn "10#\ also scales linearly with density when the
density is low\ but the present KÞ is considerably lower since "rp:R#1 ð 0[ If rather rp:t is independent
of density\ then the bulk modulus in eqn "16# may be written

KÞ �
1E

2p1 0
r¹
r1

2

0
rp

t 1
1

"17#

and the scaling is cubic with density[
Equation "15# predicts that the e}ective bulk modulus increases with increasing Poisson ratio

of the matrix material if Young|s modulus of the matrix material is _xed[ In eqns "16# and "17#
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Fig[ 4[ E}ective bulk modulus vs density of simple cubic arrangement of hollow spheres[ The radius of the region of
contact between spheres is 9\ 0)\ and 09) of the sphere radius ^ increasing contact radius leads to a sti}er medium[
The bulk modulus was calculated by using the integrated de~ection of the contact region in the strain expression[ The
di}erence to using the point values is small\ see Table B0[ The region of interest for practical purposes is the far right
hand side[

there is no in~uence of Poisson ratio of the matrix material if Young|s modulus of the matrix
material is _xed[

It may be of interest to note that FEM calculations on this foam structure reveal that the shear
sti}ness CÞ0101 of the cubic arrangement is very large\ in fact so large that the e}ective Poisson ratio
of an equivalent isotropic medium obtained by Voigt\ Reuss\ or self!consistent schemes "see
Appendix A#\ is\ at least for some materials and geometries\ negative[

4[3[ Closed cell isotropic hollow spheres model

The bulk modulus of an isotropic cellular solid consisting of hollow spheres can be approximated
by assuming that each sphere is in contact with 01 other spheres[ The spheres are\ again\ assumed
to be thin walled and the contact region between the spheres small\ so the approximations from
the last Section apply[ The arrangement of the contact points is as the centers of the sides in a
regular pentagonal dodecahedron[ This arrangement is isotropic\ Budiansky "0876#[ Unfortunately
it is not space _lling\ a fact which is presently ignored[ Some geometric properties of a dodecahedron
are needed[ With L9 denoting the length of an edge "where two faces meet# of a dodecahedron\
and v � 2p:09\ half the distance between two parallel opposite faces in the dodecahedron is

R � L9 tan v sin v "18#
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The area of a pentagonal face is

A � 4
3
L1

9 tan v "29#

and the volume is

V � 4L2
9 tan1 v sin v "20#

Subjecting this arrangement of spheres to hydrostatic load\ the stress\ strain\ and relative density
are\ respectively\

s¹00 � s¹11 � s¹22 �
P
A

"21#

o¹00 � o¹11 � o¹22 �
w9

R
"22#

r¹
r

�
3pR1t

V
"23#

where P is the force between spheres\ and w9 is the deformation of a sphere at the point of contact
with other spheres\ see Appendix B[ The bulk modulus for the foam is

KÞ �
s¹ ii

2o¹jj

�
P
w9

R
2A

"24#

which is valid also for other arrangements\ such as the simple cubic arrangement discussed above[
The extreme case of point contact "m � 9# gives

KÞ �
4E cos v

2p1 sin2 vz2"0−n1# 0
r¹
r1

1

"25#

which should be compared with eqn "15#[ Here\ n � 9[2 gives KÞ ¼ 9[0E"r¹ :r#1[ The other extreme
case of vanishing relative density and _nite area contact\ m � �\ gives

KÞ �
E
2 0

r¹
r1 0

rp

R1
1

"26#

which is twice the value of eqn "16#[ These should also be compared with the multi!disperse hollow
sphere model\ eqn "10#[ If rp:t is independent of density\ then the bulk modulus in eqn "26# may
be written

KÞ �
14E cos1 v

37p1 sin1 v 0
r¹
r1

2

0
rp

t 1
1

"27#

and the scaling is cubic with density ^ see also eqn "17#[
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4[4[ Isotropic stretchin` controlled closed cell micro structures

Upper bounds on GÞ and KÞ of a system consisting of ~at or wavy plates oriented in directions
such that the resulting medium is isotropic can easily be derived in the same way as bounds were
derived for an open cell material above ^ see also Grenestedt "0887#[ In case the cell walls are ~at\
the average elastic moduli of the cell walls are those of a plane stress isotropic membrane\
sab � Qabgdogd where

Q0000 � Q1111 �
E

0−n1
\ Q0101 � G\ Q0011 �

En

0−n1
"28#

The upper bound e}ective moduli of the cellular solid are obtained as the Voigt bounds\ i[e[ by
equating the invariants of the local and e}ective sti}ness tensors and multiplying with relative
density\

CÞiijj �
r¹
r

Qaabb\ CÞijij �
r¹
r

Qabab "39#

where CÞiijj � 8lÞ¦5GÞ\ CÞijij � 2lÞ¦01GÞ for an isotropic medium[ Some terms have been ignored
here\ see Grenestedt "0887# for a discussion[ The resulting foam sti}nesses are

EÞ�
r¹
r

1E"6−4n#
2"0−n#"8¦4n#

\ n¹ �
0¦4n

8¦4n
"30#

when the cell walls are ~at[ This is the highest obtainable sti}ness of a low density isotropic porous
solid[ The bulk modulus is naturally the same as that of the box model[ Both the bulk and shear
moduli equal the low density asymptotes of the HashinÐShtrikman upper bounds\ eqn "10# and
eqn "11#\

KÞ �
r¹
r

1E
8"0−n#

GÞ �
r¹
r

E"6−4n#

29"0−n1#
"31#

4[5[ FEM model of closed cell simple cubic "SC# array of spheres with ~at contact points

A simple cubic arrangement of thin walled spheres but now with each spherical cell having large
~at ends between each other\ as schematically depicted in Fig[ 5\ were modeled using FEM[ Let R
denote the radius of the spherical surface\ R0 the radius of the ~at cell wall between two spheres\
and L � 1zR1−R1

0 the length of the unit cell[ The area of a spherical surface is
A0 � 3pR1"2z0−"R0:R#1−1# and the area of a ~at circular surface is A1 � pR1

0[ Presently\ only
R0:L � 0:3 was studied\ for which the relative density of the cellular materials is
"r¹ :r# � t"A0¦5A1:1#:L2 ¼ 2[16t:L when volume elements of order Lt1 at intersections between
cell walls are ignored[ The ~at circular surfaces are each shared by two unit cells and half of the
wall thickness is thus allocated to each unit cell\ such that in the cellular solid all cell walls have
the same thickness[ Periodicity and geometrically cubic symmetry were exploited together with
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Fig[ 5[ Model consisting of a simple cubic array of spherical hollow shells with ~at ends[ The length of the unit cell is
L � 1zR1−R1

0[

Table 0
Elastic properties of the cellular solid using the hollow spheres SC model\ with R0:L � 0:3[ Poisson|s ratio of the matrix
is n � 9[2[ Young|s moduli should be compared with the Young|s moduli of the low density asymptotes of the HashinÐ
Shtrikman upper bounds\ eqn "32#\ which are EÞ:E � 9[99388\ 9[9049\ 9[9388 for the relative densities r¹ :r � 9[90\ 9[92\
9[0\ respectively

EÞ:E n¹
Voigt Voigt
Self cons[ Self cons[r¹

r

t
L

CÞ0000

E
CÞ0011

E
CÞ0101

E
8KÞ"r:r¹ #

1E:"0−n#
a

a\ eqn "2# Reuss Reuss

9[90 9[99295 9[999850 9[999056 9[99016 9[025 9[203 9[99050 −9[011
9[99036 −9[9572
9[99022 −9[9028

9[92 9[99806 9[99237 9[999622 9[99270 9[062 9[250 9[99430 −9[9356
9[99490 −9[99558
9[99350 9[9228

9[0 9[9295 9[9052 9[99497 9[9017 9[167 9[328 9[9106 9[9897
9[9194 9[002
9[9082 9[025

a KÞ is here divided by the low density asymptote of the HashinÐShtrikman upper bound[

symmetric and anti!symmetric loadings such that only an eighth of the unit cell needed to be
modeled[ The calculated sti}nesses are given in Table 0[ A discussion is given later\ together with
a discussion of the results from the FEM models presented in the next two Sub!Sections[
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Fig[ 6[ A tetrakaidecahedron of the ~at faced Kelvin BCC foam[ The projections in the three di}erent coordinate
directions are identical[ Tetrakaidecahedra of this shape can be packed in a BCC fashion and will then _ll space[

4[6[ FEM model of closed cell mono!disperse Kelvin BCC polyhedral cellular solid

Lord Kelvin "Thomson\ 0776# introduced a BCC {foam| structure2 ful_lling Plateau|s "0762#
laws of a cellular foam structure in equilibrium and with surface tension and isotopic pressures as
only stresses in the cell walls and isotropic pressures within the cells[ The structure consists of one
cell geometry\ a tetrakaidecahedron with 03 faces of which six are ~at with four corners and eight
are slightly curved hexagons[ These cells are closed and packed in a BCC arrangement[ In the
present analysis\ the hexagonal faces were taken as ~at\ a simpli_cation which seem justi_ed by a
remark by Kelvin ] {no shading could show satisfactorily the delicate curvature of the hexagonal
faces|[ The ~at faced tetrakaidecahedron is depicted in Fig[ 6[ This structure is the Voronoi
structure obtained from points arranged in a BCC fashion "WignerÐSeitz cell of a BCC lattice#[

During the manufacturing of a cellular solid\ the material is in a foam state "governed by for
example surface tension and pressures# prior to solidi_cation[ The fact that Plateau|s law implies
that no equilibrium foam structure can consist of only ~at cell walls has here been ignored[ This is
probably not more erroneous than to assume that the cellular solid has an equilibrium foam
structure after solidi_cation\ partly due to the fact that gravity will a}ect the foam\ and partly due
to deformations occurring during solidi_cation from the foam state[ Waviness in the cell walls
may be formed during solidi_cation of a moving or vibrating liquid foam ^ the e}ect such waves
have on sti}nesses has been discussed by Grenestedt "0887#[

2 For over 099 years\ until Weaire and Phelan "0883# recently gave a counter!example\ it was believed that this is the
structure which divides space into cells with equal volume and minimum surface area[
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Table 1
Elastic properties of the cellular solid using the Kelvin BCC model[ Poisson|s ratio of the matrix is n � 9[2[ Young|s
moduli should be compared with the Young|s moduli of the low density asymptotes of the HashinÐShtrikman upper
bounds\ which give EÞ:E � 9[99388\ 9[9049\ 9[9388 for the relative densities r¹ :r � 9[90\ 9[92\ 9[0\ respectively

EÞ:E n¹
Voigt Voigtr¹

r

t
L

CÞ0000

E
CÞ0011

E
CÞ0101

E
8KÞ"r:r¹ #

1E:"0−n# a\ eqn "2# Reuss Reuss

9[90 9[99188 9[99370 9[99123 9[99023 9[887 9[811 9[99231 9[219
9[99231 9[219

9[92 9[99785 9[9033 9[99692 9[99392 9[887 9[819 9[9092 9[208
9[9092 9[208

9[0 9[9188 9[9373 9[9122 9[9027 9[887 9[898 9[9249 9[205
9[9249 9[205

Table 2
Elastic properties of the cellular solid using the bi!disperse FCC model[ Poisson|s ratio of the matrix is n � 9[2[ Young|s
moduli should be compared with the Young|s moduli of the low density of the HashinÐShtrikman upper bounds\ which
give EÞ:E � 9[99388\ 9[9049\ 9[9388 for the relative densities r¹ :r � 9[90\ 9[92\ 9[0\ respectively

EÞ:E n¹
Voigt Voigtr¹

r

t
L

CÞ0000

E
CÞ0011

E
CÞ0101

E
8KÞ"r:r¹ #

1E:"0−n# a\ eqn "2# Reuss Reuss

9[90 9[99137 9[99389 9[99115 9[99017 9[889 0[929 9[99231 9[208
9[99231 9[208

9[92 9[99634 9[9036 9[99567 9[99275 9[889 0[918 9[9092 9[207
9[9092 9[207

9[0 9[9137 9[9385 9[9112 9[9022 9[889 0[917 9[9241 9[202
9[9241 9[202

The area of the ~at faces in Fig[ 6 are A0 � L1:7 and A1 � 2z2L1:05[ The relative density of
the highly porous solids is "r¹ :r# � t"5A0¦7A1#:L2 ¼ 2[24t:L where t is the thickness of the ~at
faces\ or cell walls\ L is the length of the side in the cubic calculation cell\ and volume elements of
order Lt1 at intersections between faces have again been ignored[ All faces in the cellular solid are
assumed to have the same thickness[ Faces which are shared by two calculation cells are allocated
half the thickness to each cell[ The presently used calculation cell consists of two tetrakaidecahedra
"one body centered and eight 0:7 corner cells#[ Due to symmetry and periodicity\ an eighth of the
calculation cell is su.cient to model for mechanical analysis[ The calculated sti}nesses are given
in Tables 1 and 3\ and a discussion is given later[



J[L[ Grenestedt:International Journal of Solids and Structures 25 "0888# 0360Ð0490 0378

Table 3
Young|s modulus and Poisson|s ratio of the Kelvin BCC model as a function of Poisson|s ratio of the matrix when
"r¹ :r# � 9[92 "t:L � 7[859269×09−2#[ Young|s moduli should be compared with the Young|s moduli of the low density
asymptotes of the HashinÐShtrikman upper bounds\ which give EÞ:E � 9[9045\ 9[9049\ 9[9043 for the Poisson ratios
n � 9\ 9[2\ 9[34\ respectively

E¹ :E n¹ E¹ :"E"0−n¹1##
n Voigt Voigt Voigt
matrix

CÞ0000

E
CÞ0011

E
CÞ0101

E
8KÞ"r:r¹ #

1E:"0−n# a\ eqn "2# Reuss Reuss Reuss

9 9[9020 9[99233 9[99411 9[887 9[811 9[9010 9[086 9[9015
9[9010 9[086 9[9015

9[2 9[9033 9[99692 9[99392 9[887 9[819 9[9092 9[208 9[9004
9[9092 9[208 9[9004

9[34 9[9054 9[99876 9[99252 9[886 9[807 9[99859 9[257 9[9000
9[99847 9[257 9[9000

4[7[ FEM model of closed cell bi!disperse FCC polyhedral cellular solid

In the unit cell\ this model contains four polyhedra with two di}erent shapes[ The centers of
gravity of the polyhedra are arranged in an FCC fashion\ but the structure is not the Voronoi
structure of FCC "which consists of identical rhombic dodecahedra#[ One polyhedron is large and
has 07 ~at faces and the other three are smaller and have 01 ~at faces[ The large polyhedron has
cubic symmetry whereas the smaller polyhedra are prolate along either Cartesian coordinate axis[
The cells are depicted in Fig[ 7[ The foam model has cubic symmetry and thus\ an eighth of the
unit cell is su.cient for structural analysis[ The areas of the faces of the structure are
A0 �"2−1z1#L1\ A1 �"1−4z1:3#L1\ A2 �"2z1:3−0#L1\ where L is the length of the side in
the FCC cube[ In highly porous solids the relative density is
"r¹ :r# � t"2A0¦01A1¦01A2#:L2 ¼ 3[92t:L where t is the thickness of the ~at faces\ and volume
elements of order Lt1 at intersections between faces in the unit cell are ignored[ All faces in the
cellular solid are assumed to have the same thickness\ and faces shared by two unit cells are
allocated half the thickness to each[ The calculated sti}nesses are given in Tables 2 and 4\ and a
discussion is given later[

5[ Results from _nite element calculations on closed cell models

The general purpose _nite element package ABAQUS was used for all FE analyses[ All models
used exclusively the shear deformable eight noded shell element S7R[ There are no through!the!
thickness stresses in the cell walls[ Due to symmetry of the cubic unit cells\ only one eighth of the
cubic unit cells were modeled[ Displacements were prescribed in such a way that the resulting
deformation was periodic and the overall macroscopic strain state homogeneous[ For determining
all "cubic# elastic constants\ two deformation states are su.cient if tractions are extracted and
three if only strain energies are extracted from the analyses[ Presently\ three calculations were
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Fig[ 7[ Geometry of the two {bubbles| which make up the FCC cellular solid[ The left bubble has geometrically cubic
symmetry[

Table 4
Young|s modulus and Poisson|s ratio of the bi!disperse FCC model as a function of Poisson|s ratio of the matrix when
"r¹ :r# � 9[92 "t:L � 6[34×09−2#[ Young|s moduli should be compared with the Young|s moduli of the low density
asymptotes of the HashinÐShtrikman upper bounds\ which give EÞ:E � 9[9045\ 9[9049\ 9[9043 for the Poisson ratios
n � 9\ 9[2\ 9[34\ respectively

E¹ :E n¹ E¹ :"E"0−n¹1##
n Voigt Voigt Voigt
matrix

CÞ0000

E
CÞ0011

E
CÞ0101

E
8KÞ"r:r¹ #

1E:"0−n# a\ eqn "2# Reuss Reuss Reuss

9 9[9024 9[99207 9[99388 9[881 0[920 9[9010 9[084 9[9015
9[9010 9[084 9[9015

9[2 9[9036 9[99567 9[99275 9[889 0[918 9[9092 9[207 9[9004
9[9092 9[207 9[9004

9[34 9[9056 9[99859 9[99237 9[878 0[917 9[99859 9[255 9[9000
9[99859 9[255 9[9000

performed for each case "i[e[\ for each model\ each relative density\ and each Poisson ratio of the
matrix#\ and both tractions and strain energies were extracted[ Moduli determined from the
tractions were slightly more consistent than those determined from strain energies\ the di}erence
most likely being due to numerical round!o} errors[ The two approaches are identical if the
precision is exact[
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For the BCC and FCC models\ shown in Figs 6 and 7\ the elastic anisotropy
a �"CÞ0000−CÞ0011#:"1CÞ0101# is within 09) from being isotropic[3 The BCC and FCC models are
thus practically elastically isotropic[ The cubic sti}nesses\ as well as isotropic Young|s modulus
and Poisson|s ratio\ for the foams versus relative densities "r¹ :r# are presented in Tables 0Ð4 for
the SC\ BCC\ and FCC models[ Three isotropic estimates for Young|s moduli are given for each
case ] the Voigt\ the self consistent\ and the Reuss values "see Appendix A#[

The Young|s moduli of the three model foams\ SC\ BCC\ and FCC\ scale almost linearly with
relative density[ This indicates that stretching is the major deformation mechanism in these models[
The ratio "EÞ:E#:"r¹ :r# is then interesting to compare between the di}erent models[ The following
comparison is made for the Poisson ratio of the cell wall n � 9[2\ and the data in Tables 0Ð2 are
used[ For the SC model with R0:L � 0:3\ "EÞ:E#:"r¹ :r# is between 9[02 "Reuss# and 9[05 "Voigt# for
"r¹ :r# � 9[90\ and between 9[08 and 9[11 for "r¹ :r# � 9[0[ These values are the lowest of the
three FE models[4 For both the BCC and the FCC models\ "EÞ:E#:"r¹ :r# ¼ 9[24 for all densities
investigated[ The low density asymptotes of the HashinÐShtrikman upper bounds on bulk and
shear moduli\ eqns "10# and "11#\ give the Young|s modulus "which is an upper bound on Young|s
modulus since EÞ is an increasing function of both KÞ and GÞ#

EÞ�
8KÞGÞ

2KÞ¦GÞ
�

r¹
r

1"6−4n#E
2"0−n#"8¦4n#

"32#

For n � 9[2\ eqn "32# gives EÞ¼ 9[49E"r¹ :r#\ which is approximately 39) higher than for the BCC
and FCC models[

The bulk modulus of the SC model foam is substantially lower than the Hashin!Shtrikman
upper bound[ Lower densities of SC have lower bulk moduli relative to the bounds ^ see Table 0
where the bulk moduli have been normalized by the low density asymptote of the HashinÐ
Shtrikman upper bound\ eqn "10#[ The bulk moduli of the BCC and FCC foams equal the low
density asymptote of the HashinÐShtrikman upper bound to within 0[0) for all investigated
densities and Poisson ratios of the cell walls[ In other words\ these foam models are extremely sti}
when subjected to hydrostatic loads[

The Poisson ratios of the SC model are somewhat peculiar\ being negative for the lowest density
"r¹ :r � 9[90#[ The reason has to do with the high shear sti}ness of a sphere as compared to the
uniaxial sti}ness of the sphere[

The Poisson ratios of the BCC and FCC models are 9[20Ð9[21 for all densities\ when n � 9[2 for
the cell walls[ Divinycell "0884\ 0881a\ b# reports in their material manuals the Poisson ratio 9[21
for the closed cell PVC based polymer foam grades H\ HT\ and HCP\ for all foam densities[

Cherkaev et al[ "0881# have shown that the e}ective Young|s modulus of a two!dimensional
isotropic medium containing holes "1!D cellular solid# is independent of the Poisson ratio of the

3 As a comparison\ a � 9[01 for an Na crystal\ and a � 0[99 for a W crystal[
4 Higher moduli can be obtained from the SC model with di}erent R0:L[ For example\ R0:L � 9[34 and n � 9[2 gives

"EÞ:E#:"r¹ :r# between 9[13 "Reuss# and 9[15 "Voigt# for "r¹ :r# � 9[90\ and "EÞ:E#:"r¹ :r# � 9[23 "Reuss and Voigt# for
"r¹ :r# � 9[0[ If the spheres are further {in~ated|\ the SC model approaches the box model\ for which "EÞ:E#:"r¹ :r# is
between 9[32 "Reuss# and 9[49 "Voigt# for n � 9[2[
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isotropic matrix material[ Similar results for 2!D cellular solids are not known to the author[ It is
interesting to note that the e}ective Young|s modulus increases by approximately 14) for the
BCC and FCC models when Poisson|s ratio decreases from 9[34Ð9\ see Tables 3 and 4 where the
e}ects of Poisson|s ratio of the cell walls on e}ective properties are given[ The {plane strain|
modulus E:"0−n1# is also a}ected but to a lesser extent\ approximately 02) for the same models
and range of Poisson|s ratio[

6[ Experimentally measured elastic moduli of metal and polymer foams

The experimental data on Divinycell "0884\ 0881a\ b# H\ HT\ and HCP grade closed cell polymer
foam materials\ with absolute densities in the ranges 25Ð149 kg:m2 "H!grade#\ 49Ð009 kg:m2 "HT!
grade#\ and 199Ð399 kg:m2 "HCP!grade# show a dependence of moduli "Young|s modulus E and
shear modulus G# which is neither linear nor quadratic[ Linear regression "log EÞ and log GÞ vs
log"r¹ :r## give the exponent m in eqn "8# in the range 0[98Ð0[4 for the H\ 9[66Ð9[83 for the HT\
and 0[96Ð0[35 for the HCP grades[ Divinycell "0884\ 0881a\ b# gives the Poisson ratio n � 9[21 for
all these materials\ independent of density\ which means that all moduli "E\ G\ K# scale in the
same way with density[ This is not completely consistent with their data but probably a fair
approximation[ We conclude that these polymer foams scale more or less linearly with density[
The quotient "EÞ:E#:"r¹ :r# is then of utmost interest[

Assuming Young|s modulus E � 1[4 GPa and density r � 0399 kg:m2 for the cell wall polymer
in the Divinycell H!grade foams\ the quotient "EÞ:E#:"r¹ :r# is in the ranges 9[01Ð9[47 for H29\ 9[06Ð
9[42 for H34\ 9[08Ð9[45 for H59\ 9[11Ð9[59 for H79\ 9[16Ð9[69 for H099\ 9[29Ð9[64 for H029\ 9[20Ð
9[70 for H059\ 9[23Ð9[76 for H199\ and 9[23Ð9[89 for H149\ where the ranges cover tests performed
in di}erent material orientations\ and tension and compression[ All values were taken from the
Divinycell manual "0884#[ The large ranges are partly due to anisotropy of the foams\ and the
numbers just given include tests performed both perpendicular and parallel to the plane of the
foam sheets "the foams are manufactured in sheets#[ Compression tests performed in the same
material direction but with two di}erent test methods ðASTM D 0510!62 "reapproved 0868# Proc
A\ and Proc B "old standards#Ł give values for compressive moduli which for some materials di}er
by more than a factor of two\ Divinycell "0884\ 0881a\ b#[

The quotient "EÞ:E#:"r¹ :r# cannot exceed 9[49 for an isotropic foam when n � 9[2\ see eqn "32#[
The present assumption for Young|s modulus of the cell walls\ E � 1[4 GPa\ may therefore
be erroneous[ Micro and nano indentations are presently being prepared with the goal to
experimentally measure cell wall properties[

The presently produced porous metals are still in an initial stage of development as a structural
material\ and the properties\ normalized with the properties of the cell walls\ of the foams are
inferior to those of for example polymer foams[ The reason for the relatively poor behavior of the
metal foams is likely to be found in the micro structure of the metal foams[ Figures 8 and 09 show
morphologies of the Alporas aluminum foam from Shinko Wire\ and the H029 polymer foam
from Divinycell[ The relative densities are r¹ :r � 9[970 for the aluminum foam\ and r¹ :r � 9[982
for the polymer foam[ The relative Young|s moduli EÞ:E divided by relative densities r¹ :r of
these foams are approximately "EÞ:E#:"r¹ :r# � 9[12 and "EÞ:E#:"r¹ :r# � 9[30\ respectively\ assuming
Young|s modulus E � 57 GPa and density r � 1699 kg:m2 for the aluminum alloy\ Young|s



J[L[ Grenestedt:International Journal of Solids and Structures 25 "0888# 0360Ð0490 0382

Fig[ 8[ Morphology of the aluminum closed cell foam Alporas from Shinko Wire[ Relative density is
r¹ :r � 119:1699 � 9[970[
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Fig[ 09[ Morphology of the expanded polymer closed cell foam H029 from Divinycell "0884#[ Relative density is
r¹ :r � 029:0399 � 9[982[
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modulus EÞ� 0[14 GPa for the aluminum foam\ Young|s modulus E � 1[4 GPa and density
r � 0399 kg:m2 for the polymer\ and Young|s modulus EÞ� 84 MPa for the polymer foam[ The
moduli for both foams were measured during unloading\ which for the aluminum foams give
considerably higher moduli than what is obtained during initial loading when plastic ~ow likely
occurs at stress concentrations[ The experimental values of the foams were obtained by Sugimura
et al[ "0886#[

7[ Note on scaling of stiffness with density

The scaling of elastic sti}ness with relative density was discussed in the beginning of the paper[
The FEM models of the foams predict that both Young|s and bulk moduli scale linearly with
density[ Di}erent moduli can scale di}erently for a given material ^ an example being the 1!D
honeycomb\ depicted in Fig[ 0\ whose 1!D Young|s modulus scales cubically and 1!D bulk modulus
scales linearly with density[ The analytic mono!disperse closed cell simple cubic hollow spheres
model predicts some di}erent scalings of bulk modulus with density\ but the model is not realistic
for the presently considered polymer and aluminum foams[

The Young|s modulus is easily measured in a tensile test[ The bulk modulus is more di.cult to
measure\ but it can be estimated by assuming isotropy and linear elasticity of the foam and
measuring both axial and transverse strain in a "uniaxial# tensile test[ If the bulk modulus scales
for example linearly with density\ KÞ � cKK"r¹ :r#\ and the Young|s modulus quadratically\
EÞ� cEE"r¹ :r#1\ then Poisson|s ratio will for low densities approach 0:1\

n¹ �
2KÞ−EÞ

5KÞ
�

2cKK−cEE"r¹ :r#
5cKK

�
0
1

−
cE

cK 0
0
1

−n1 0
r¹
r1:

0
1

when 0
r¹
r1: 9 "33#

Gibson and Ashby "0877# indicate that some foams deform locally due to bending in the cell
members when the foam is subjected to "macroscopic# deviatoric deformations\ and due to stret!
ching in the cell members when the foam is subjected to "macroscopic# isotropic deformations[
The 1!D honeycomb is depicted in Fig[ 0 has this behavior[ However\ the closed cell PVC based
foams from Divinycell "0884\ 0881a\ b# behave di}erently ^ all foam sti}nesses scale more or less
linearly with density\ and Poisson|s ratio is approximately 9[21 for all the foams\ independent of
density[

8[ Discussion on reasons for deviations between theory and experiments

There are a number of reasons that the elastic properties of the cellular materials di}er from the
calculated properties[ The reason are most likely hidden in the complex geometrical micro structure
of the cellular solids\ at least as long as the material of the cell wall is not altered during the
processing of the foam[

Figures 8 and 09 of the morphologies of the aluminum and polymer foams show that both
foams have {imperfections| such as non!uniform cell size "multi!dispersity#[ The ratio between
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volumes of the largest and smallest cells is as much as two or three orders of magnitude for both
materials[ Both materials also have non!uniform cell wall thicknesses\ where the ratio between
thick and thin walls is approximately an order of magnitude[ The metal forms have some excess
material\ which is believed not to contribute to strength or sti}ness\ at locations where cell walls
meet\ and collected on cell walls[ This excess material may not a}ect foam properties\ but since it
increases the weight of the foam\ the relative properties are reduced[ The major di}erence between
the two materials seems to be the straightness of the cell walls[ The cell walls of the aluminum
foam are more wavy than those of the polymer foam[

The in~uence of cell wall waviness on sti}ness of cellular solids has been addressed by Grenestedt
"0887#[ The in~uence is rather large[ For example\ waviness in the cell walls with an amplitude
which is _ve times the cell wall thickness leads to a sti}ness decrease in the order of 39)[ The
in~uence of di}erent cell wall thicknesses within a cellular solid has been addressed by Grenestedt
and Bassinet "0887#[ The in~uence is not as signi_cant[ A statistical thickness distribution\ where
the thickest cell walls were 08 times as thick as the thinnest\ results in a 04Ð19) loss of sti}ness as
compared with a foam with the same geometry but with all cell walls having the same thickness[

Some further sense for the in~uence of cell wall curvature can be gained by comparing the elastic
response of the simple cubic arrangement of spheres with the Kelvin BCC structure[ The bulk
moduli of the analytic sphere models scale linearly with density for very low relative densities when
the contact area between neighboring spheres is _nite\ but quadratically for higher densities[ The
FEM analysis of the SC sphere model with large contact regions showed a more or less linear
scaling\ and that the sphere model is more compliant than the BCC model for all densities The
FEM sphere model and the BCC model are qualitative not too di}erent\ except that the former
has a lot of curvature in the cell walls whereas the latter consists of only ~at cell walls[ The BCC
model is approximately twice as sti} as the SC model with R0:L � 0:3 "see Tables 0 and 1#[

Regarding the in~uence of cell size distribution\ the mono!disperse Kelvin BCC may be compared
to the bi!disperse FCC structure[ These two structures have virtually identical elastic properties\
independent of both relative densities and base material properties "Poisson|s ratio#[ This fact is
naturally far from su.cient to draw any major conclusions about the e}ect of multi!dispersity\
but it indicates that the e}ect may be small[

09[ Summary and conclusions

A number of models for cellular solids were presented\ and the foam properties these models
predict were calculated and compared[

Two ~at faced models\ denoted BCC and FCC\ are believed to be quite realistic models for
actual closed cell foams[ The e}ective Young|s moduli predicted by these models scale linearly
with density of the cellular material\ which conforms well with experimental data from for example
expanded PVC based foams[ Both models predict the Poisson ratio n¹ � 9[21 for the foams when
n � 9[2 for the cell wall material ^ this is identical to what Divinycell "0884\ 0881a\ b# reports[
Quantitatively\ the agreement with experimental data for the PVC based foams is good\ whereas
it is o} by approximately a factor of two for aluminum foam[
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Appendix A ] Equivalent isotropic stiffnesses obtained from cubic stiffnesses

Many of the real foams which we wish to model are more or less isotropic[ From the results
from the calculations on the cubic cell models\ we therefore may wish to create an {equivalent|
isotropic medium\ whose sti}nesses are given for example by shear modulus GÞ and bulk modulus
KÞ[ This can be done for example by assuming that the foam looks like a polycrystal as depicted in
Fig[ A0\ i[e[ the foam consists of {grains| with cubic symmetry which are large compared to the
individual cells[ There are many grains in an RVE of the foam\ arranged in di}erent orientations\
such that the RVE is essentially isotropic[ In general\ the stress and deformation states within the
grains are complex\ but bounds on the isotropic sti}nesses GÞ and KÞ can easily be obtained by
assuming simple deformation or stress _elds throughout the RVE[ For the sake of completeness\
some of the results are re!derived here[

Upper bound sti}nesses can be obtained by assuming that the strain in each point in the RVE
is the same[ This was done by Voigt "0817#[ The index {V| is used for quantities which are related
to the Voigt bound[ A constant strain state is a kinematically feasible strain _eld when the
boundaries are displaced in agreement with a homogeneous strain state\ and the resulting strain
energy will due to the minimum of the potential energy be an upper bound on the strain energy
in the RVE "the potential energy equals the strain energy since the only loading is boundary
displacements#[ With Vr denoting the volume of grain r\ and CÞcub\r

ijkl the cubic sti}ness components
of grain r expressed in a global coordinate system\ the upper bound strain energy density in the
RVE is

Fig[ A0[ A model for an isotropic foam\ consisting of {grains| made of cellular solid with cubic symmetry[ Each grain is
large compared to the cell size of the cellular solid from which it is made[
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WÞ V �
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"VrCÞcub\r
ijkl o¹ijo¹kl#
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r

"VrCÞcub\r
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r
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"A0#

By equating this expression to the strain energy in eqn "1# in the main body of the paper\ the foam
sti}nesses are obtained

CÞV
ijkl �

s
r

"VrCÞcub\r
ijkl #

s
r

Vr
"A1#

This expression can be simpli_ed by using the invariants of the sti}ness tensors "CÞcub\r
ijkl depends on

the orientation of grain r\ whereas the invariants CÞcub\r
iijj and CÞcub\r

ijij do not#\

CÞV
iijj � CÞcub

iijj

CÞV
ijij � CÞcub

ijij "A2#

where the index {r| was removed since the sti}ness invariants are the same for all grains[ The
isotropic upper bound sti}nesses are

KÞV � CÞV
iijj:8

GÞV � "2CÞV
ijij−CÞV

iijj#:29 "A3#

These are upper bounds on KÞ and GÞ\ which is seen by for example\ making use of the strain state
o¹01 � 0:z1\ other o¹ij � 9\ which gives GÞV � WÞ V − WÞ � GÞ\ and o¹ij � z1:2dij\ which gives
KÞV � WÞ V − WÞ � KÞ "recall that the foam is isotropic#[

Lower bound sti}nesses for a polycrystal can similarly be obtained by assuming that the stress
in each point in the RVE is the same\ as was done by Reuss "0818#\ and using the minimum of the
complimentary potential energy[ The index {R| is used for quantities which are related to the Reuss
bound[ It is essential for these lower bounds that the micro structure is as described\ i[e[ there are
grains with known properties which are so large compared to the individual cells that they can be
considered to be homogeneous\ and there are many grains in an RVE of the foam[ Under
completely general circumstances\ the lower bound sti}nesses are zero "which is obtained when
cell walls are not connected#[

The result from the lower bound analysis is that the invariants of the foam and grain compliancies
are equal\

SÞR
iijj � SÞcub

iijj

SÞR
ijij � SÞcub

ijij "A4#

and the lower bound sti}nesses are
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KÞR �
0

SÞR
iijj

GÞR �
04

1"2SÞR
ijij−SÞR

iijj#
"A5#

When the grains have cubic symmetry\ these upper and lower bounds on bulk modulus coincide[
This does not imply that we can accurately determine the bulk modulus for the real foam\ but only
for the polycrystal model considered here[

Better bounds for a polycrystal consisting of cubic crystals can be obtained by the method of
Hashin and Shtrikman "0851#[ Other estimates for the shear modulus can be obtained by using
self consistent models "without bounding properties#\ as done by e[g[ Hershey and Dahlgren "0843#
and Kro�ner "0847#[ We refer to these papers for further discussions[

Appendix B ] Deformation of a spherical cap

Reissner "0835a\ b# has given expressions for deformations of spherical caps using shallow shell
theory with LoveÐKirchho} kinematics[ In the case of an evenly distributed load within a circular
region of radius rp on the spherical cap\ whose curvature is R and wall thickness t\ the center
deformation is

w9 �
z01"0−n1#

p

PR

Et1 0
ker? m

m
¦

0

m11 "B0#

where

m � 3z01"0−n1#
rp

zRt
� 3z01"0−n1#X

p

1
rp

RX 0
r

r¹1 "B1#

and E and n are Young|s modulus and Poisson|s ratio for the cap material\ P is the total force on
the circular region\ and ker? m � d:dm Re ðK9"mzi#Ł where K9 is a modi_ed Bessel function of the
zeroth order[ Two extreme cases of interest are the case of point contact "m � 9#\ for which

w9 �
z2"0−n1#

3
PR

Et1
"B2#

and the case of vanishing relative density and _nite contact area "m � �#\ for which

w9 �
PR1

pEtr1
p

"B3#

The e}ective "average# strain of the cellular solid consisting of hollow spheres is an integral of
the displacement over the contact surface between the spheres[ For simplicity\ but with some loss
of accuracy\ the e}ective strain can be approximated as o¹00 � w9:R\ etc[\ i[e[ using the de~ection at
the center of the contact region rather than the integrated average[
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Table B0
Bulk modulus for the cellular solid using the spherical cap approximation[ Poisson|s ratio is n � 9[2[ Observe that m is
constant when "rp:R#z"r:r¹ # is constant

KÞ:E"c# KÞ:E"d# KÞ:E"d#

KÞ:E"a# KÞ:E"b# KÞ:E"a# KÞ:E"b# m � 9 m � � m � �
"rÞ:r# rp:R � 9[90 rp:R � 9[90 rp:R � 9[0 rp:R � 9[0 rp:R � 9 rp:R � 9[90 rp:R � 9[0

9[0 7[19×09−3 7[11×09−3 8[41×09−3 0[93×09−2 7[07×09−3 0[56×09−5 0[56×09−3

9[90 7[26×09−5 7[41×09−5 0[76×09−4 1[47×09−4 7[07×09−5 0[56×09−6 0[56×09−4

9[990 8[41×09−7 0[93×09−6 0[56×09−5 0[74×09−5 7[07×09−7 0[56×09−7 0[56×09−5

09−3 0[76×09−8 1[47×09−8 0[56×09−6 0[61×09−6 7[07×09−09 0[56×09−8 0[56×09−6

09−4 0[56×09−09 0[74×09−09 0[56×09−7 0[57×09−7 7[07×09−01 0[56×09−09 0[56×09−7

09−5 0[56×09−00 0[61×09−00 0[56×09−8 0[56×09−8 7[07×09−03 0[56×09−00 0[56×09−8

"a# E}ective strain determined by the de~ection in the center of the contact area[
"b# E}ective strain determined by integrating the de~ection over the contact area[
"c# Equation "B6#[
"d# Equation "B7#[

For a simple cubic arrangement\ the e}ective "average# stress under hydrostatic loading is
s¹ 00 � s¹ 11 � s¹ 22 � P:L1 where L � 1R is the length of the cubic unit cell[ The relative density is

r¹
r

�
p

1
t
R

"B4#

The e}ective bulk modulus of the cellular solid with this micro structure\ is

KÞ �
E

5pz2"0−n1# 0
r¹
r1

1 m1

m ker? m¦0
"B5#

when o¹00 � w9:R[ The bulk modulus according to eqn "B5# is tabulated in Table B0\ together with
the bulk modulus which is obtained when the strain is computed by integrating the de~ection over
the contact region[

Two extreme cases of eqn "B5# are the cases of point contact "m � 9#\ for which

KÞ �
3E

2p1z2"0−n1# 0
r¹
r1

1

"B6#

and the case of vanishing relative density and _nite area contact "m � �#\ for which

KÞ �
E
5 0

r¹
r1 0

rp

R1
1

"B7#

It can be noted that Poisson|s ratio\ here de_ned using contraction in the x1 and x2 directions when
loaded in the x0 direction in the way of the uniaxial tensile test\ is zero[
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